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Figure 1: An example of an image ('peacock') and its maximally disjoint explanations.

“If one is investigating things that are not directly perceptible, and
if one sees that several explanations are possible, it is reckless to
make a dogmatic pronouncement concerning any single one; such
a procedure is characteristic of a seer rather than a wise man.”

Diogenes

Abstract
Existing explanation tools for image classifiers usually give
only one single explanation for an image. For many images,
however, both humans and image classifiers accept more than
one explanation for the image label. Thus, restricting the
number of explanations to just one severely limits the insight
into the behavior of the classifier. In this paper, we describe
an algorithm and a tool, REX, for computing multiple ex-
planations of the output of a black-box image classifier for a
given image. Our algorithm uses a principled approach based
on causal theory. We analyse its theoretical complexity and
provide experimental results showing that REX finds multi-
ple explanations on 7 times more images than the previous
work on the ImageNet-mini benchmark.

1 Introduction
Neural networks (NN) are now a primary building block of
most computer vision systems. The opacity of NNs creates
demand for explainability techniques, which attempt to pro-
vide insight into why a particular input yields a particular
observed output. Beyond increasing a user’s confidence in
the output, and hence also their trust in the AI system, these
insights help to uncover subtle classification errors that are
not detectable from the output alone (Chockler, Kroening,
and Sun 2021).

*This work was done prior to joining Amazon.

The most commonly used definition of an explanation is
a part of the input image that is sufficient for the classifier to
yield the same label as the original image. Explanations, ac-
cording to this definition, are obviously not unique. Images
often have several explanations for their classification as il-
lustrated in Figure 1. Initial results in the study of multiple
explanations by Shitole et al. (2021) demonstrate that im-
ages have multiple explanations in all but degenerate cases.

There is a growing body of work analysing the human
perception of images (Fan et al. 2020; van Dyck et al. 2021)
and how this differs from what NNs do. Roughly speaking,
humans do not detect small differences. In particular, there
is little sense in checking the effect of changing one pixel or
any small number of pixels, as a new explanation would be
indistinguishable to the human eye from the previous one.
Therefore, we focus our effort on the search for sufficiently
different explanations (see Section 4.1).

The prevalence of multiple explanations suggests that al-
gorithms for computing more than one explanation are es-
sential for understanding image classifiers and uncovering
subtle classification errors. The image in Figure 2 is classi-
fied by VGG19 as a tennis racket, with the first explanation
being indeed a part of the racket. However, the second expla-
nation is the player’s shorts, uncovering a misclassification.
Yet, existing techniques provide only one explanation of an
output of the classifier. The one notable exception is the tool
SAG (Shitole et al. 2021), outlined in Section 2, which con-
structs multiple explanations by using a beam search over a
fixed grid. However, as SAG searches an exponential space
(the number of combinations of cells of the grid is exponen-
tial), it either runs into the exponential explosion problem or
drops a part of the state space. This is hardly surprising; as
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(a) (b) (c) (d)

Figure 2: The image (a) is classified as ‘tennis racket’. Its disjoint explanations found by REX are in (b) and (c). The first
explanation is a part of a racket, and the second explanation uncovers a misclassification, as it is the player’s shorts. (d) is the
saliency landscape.

we prove in Section 3.3, the problem of computing multiple
explanations is intractable. Specifically, we present an expo-
nential upper bound on the number of possible explanations
and demonstrate that this bound is tight.

In view of these theoretical results, we present REX, an
approximation algorithm and a tool for computing multiple
explanations for black-box image classifiers. Using the for-
mal mathematical theory of actual causality, REX computes
a ranking of the pixels of the image. This ranking is used
to construct a refined search landscape (Figure 5), which
REX explores in order to generate multiple, different, expla-
nations. Unlike SAG, our search is not limited to exploration
from highly ranking parts of the image and allows even un-
likely (low ranking regions) to be fruitfully exploited for
explanations. Whereas SAG uses a fixed square and beam
width for its search, REX expands and contracts its search
width to minimise explanation size. For instance, for the im-
age in Figure 1, REX produces 4 explanations whereas SAG
produces only 2.

In Section 5 we experimentally compare REX with SAG
and with DEEPCOVER on standard benchmarks. The results
demonstrate that REX produces finer-grained explanations
and is superior to SAG wrt the number of sufficiently dif-
ferent explanations it produces. We provide the details of
the benchmark sets, the models, and the main results in the
paper. The tool, all datasets, and the full set of results are
submitted as the supplementary material.

2 Related Work
There is a large body of work on algorithms for computing
one explanation for a given output of an image classifier.
They can be largely grouped into two categories: propaga-
tion and perturbation. Propagation-based explanation meth-
ods back-propagate a model’s decision to the input layer
to determine the weight of each input feature for the deci-
sion (Springenberg et al. 2015; Sundararajan, Taly, and Yan
2017; Bach et al. 2015; Shrikumar, Greenside, and Kundaje
2017; Nam et al. 2020). GRAD-CAM only needs one back-
ward pass and propagates the class-specific gradient into the
final convolutional layer of a DNN to coarsely highlight im-
portant regions of an input image (Selvaraju et al. 2017).

Perturbation-based explanation approaches introduce per-
turbations to the input space directly in search for an ex-
planation. SHAP (SHapley Additive exPlanations) computes
Shapley values of different parts of the input and uses them
to rank the features of the input according to their impor-
tance (Lundberg and Lee 2017). LIME constructs a small
neural network to label the original input and its neighbor-
hood of perturbed images and uses this network to esti-
mate the importance of different parts of the input (Ribeiro,
Singh, and Guestrin 2016; Datta, Sen, and Zick 2016; Chen
et al. 2018; Petsiuk, Das, and Saenko 2018; Fong, Patrick,
and Vedaldi 2019). Anchors uses a similar approach to find
parts of the inputs sufficient for the classification, regardless
of the values of other parts (Ribeiro, Singh, and Guestrin
2018). Finally, DEEPCOVER ranks elements of the image
according to their importance for the classification and uses
this ranking to greedily construct a small explanation. The
DEEPCOVER ranking procedure in (Sun et al. 2020) uses
SFL, and is replaced in (Chockler, Kroening, and Sun 2021)
by the approximate computation of causal responsibility.

Work on calculating more than one explanation for a
given classification outcome is in its infancy. To the best
of our knowledge, there is only one algorithm and tool that
computes multiple explanations of image classifiers – SAG,
described in (Fuxin et al. 2021; Shitole et al. 2021). The
motivation for SAG is the same as ours: increasing human
confidence and trust as well as our understanding of image
classification algorithms.

SAG partitions the input image into a fixed grid (by de-
fault 7×7). A beam search algorithm is used to search for the
initial w (i.e., the beam width) root nodes in the graph. The
search starts with w distinct highest weighted image regions.
Their children nodes are perturbed, until the resulting mask
causes a unacceptable drop in the label’s probability. Expla-
nations are identified from the SAG as multiple minimal re-
gions of the input image sufficient for the correct classifica-
tion with a high confidence. Explanations are presented in
the form of a directed acyclic graph, or Structured Attention
Graph (SAG). Multiple explanation diversity is enforced by
bounding the maximal overlap in terms of a number of re-
gions shared between explanations.



3 Theoretical Results
In this section we describe the theoretical foundations of our
approach.

3.1 Background on Actual Causality
Our definitions are based on the framework of actual causal-
ity introduced by Halpern and Pearl (2005). The reader is
referred to that paper and to Halpern (2019) for an updated
overview and more information on actual causality. Due to
the lack of space, we omit formal definitions and instead dis-
cuss the intuition informally. This is sufficient for our pur-
poses, as we explain below.

The definition of an actual cause is based on the concept
of causal models, which consist of a set of variables, a range
of each variable, and structural equations describing the de-
pendencies between the variables. Actual causes are defined
with respect to a given causal model, a given assignment to
the variables of the model (a context), and a propositional
logic formula that holds in the model in this context.

Actual causality extends the simple counterfactual rea-
soning (Hume 1739) by considering the effect of interven-
tions, which are changes of the current setting. Roughly
speaking, a subset of variables X and their values in a given
context is an actual cause of a Boolean formula φ being True
if there exists a change in the values of other values that cre-
ates a counterfactual dependency between the values of X
and φ (that is, if we change the values of variables in X ,
φ would be falsified). The formal definition by Halpern and
Pearl (2005) and in its modifications, the latest of which is
by Halpern (2015), are far more complex due to the potential
dependencies between the variables and considering causes
of more than one element. In our setup, where we are only
interested in singleton causes and in interventions only on
the input variables, all versions of the definition of (a part
of) an actual cause are equivalent to our definition under the
assumption of independence between the input variables.

Responsibility, as defined by Chockler and Halpern
(2004) and adapted to the modified definition of causality
by Halpern (2015), is a quantification of causality, attribut-
ing to each actual cause its degree of responsibility, which is
derived from the size of a smallest contingency required to
create a counterfactual dependence. The degree of responsi-
bility is defined as 1/(k+1), where k is the size of a smallest
contingency. The degree of responsibility of counterfactual
causes is therefore 1 (as k = 0), and the degree of responsi-
bility of variables that have no causal influence on φ is 0, as
k is taken to be ∞. In general, the degree of responsibility
is always between 0 and 1, with higher values indicating a
stronger causal dependence.

3.2 Causes and explanations in image
classification

We follow the approach by Chockler, Kroening, and Sun
(2021) (CKS from now on) to defining causes and construct-
ing explanations in image classification. We view the NN as
a black-box causal model in the Halpern and Pearl (2005)-
sense of the word, with its inputs being the individual pixels
of an input image. The variables are defined as Boolean, with

the values being the original color and the masking color (as
shown by CKS, a specific masking color does not have al-
most any effect on the results). Following Halpern (2019),
we further augment the model by limiting the allowed inter-
ventions to masking the colors of input’s pixels. Moreover,
we are only interested in singleton causes (recall that we as-
sume independence between the input variables).
Definition 1 (Singleton cause for image classification,
CKS). For an image x classified by the NN as f(x) = o,
a pixel pi of x is a cause of o iff there exists a subset Pj of
pixels of x such that the following conditions hold:
SC1. pi ̸∈ Pj;
SC2. changing the color of any subset P ′

j ⊆ Pj to the mask-
ing color does not change the classification;

SC3. changing the color of Pj and the color of pi to the
masking color changes the classification.

We call such Pj a witness to the fact that pi is a cause of x
being classified as o.
Definition 2 (Simplified responsibility, CKS). The degree
of responsibility r(pi, x, o) of pi for x being classified as o
is defined as 1/(k + 1), where k is the size of the smallest
witness set Pj for pi. If pi is not a cause, k is defined as∞,
and hence r(pi, x, o) = 0. If changing the color of pi alone
to the masking color results in a change in the classification,
we have Pj = ∅, and hence r(pi, x, o) = 1.
Lemma 1 (CKS). Definition 1 is equivalent to the defini-
tion of an actual cause when input variables in the model
are independent of each other, and we do not consider inter-
ventions on internal variables.
Corollary 1 (CKS). The problem of detecting causes in im-
age classification is NP-complete.
Definition 3 (Explanation for image classification, CKS).
An explanation in image classification is a minimal subset
of pixels of a given input image that is sufficient for the NN
to classify the image, where “sufficient” is defined as con-
taining only this subset of pixels from the original image,
with the other pixels set to the masking color.

3.3 New Theoretical Results
In this section we prove new complexity bounds for comput-
ing multiple explanations.

CKS observe that the precise computation of an explana-
tion in our setting is intractable, as the problem is equivalent
to an earlier definition of explanations in binary causal mod-
els, which is DP-complete (Eiter and Lukasiewicz 2004). DP
is the class of languages that are an intersection of a lan-
guage in NP and a language in co-NP and contains, in partic-
ular, the languages of unique solutions to NP-complete prob-
lems (Papadimitriou 1984). The following lemma shows that
computing a second (or any subsequent) explanation is not
easier than computing the first one. For the purposes of prov-
ing theoretical results, a subsequent explanation is one that
differs from the previous ones in at least one pixel; the algo-
rithm in Section 4 constructs spatially different explanations,
more suitable to the human perception.
Lemma 2. Given an explanation, constructing a different
one is DP-complete.



Proof Sketch. Membership in DP is straightforward. For the
hardness part we show a reduction from the problem of com-
puting an explanation. Given an image x classified asN (x),
we construct a chimera image from x and an existing ex-
planation of N (x) (taken from another image) attached to
it without obscuring it. Then, our existing explanation is the
first explanation to the image being classified as N (x), and
a second one is an explanation of the classification of the
original image.

We note that the chimera image constructed in the reduc-
tion does not have a rectangular shape; however the com-
plexity of the explanation problem does not depend on the
shape of the input image.

CKS use a greedy approach to constructing approximate
explanations, based on scanning the ranked list of pixels
pixel ranking . We note that the construction of the ranked
list is intractable as well (NP-complete), even when the rank-
ing is based on Definition 2, rather than the general def-
inition of responsibility by Chockler and Halpern (2004).
Hence, CKS construct an approximate ranked list by parti-
tioning the set in iterations and computing approximate de-
grees of responsibility for each partition while discarding
low-responsibility elements.

However, this approach does not help in reducing the
complexity of computing many explanations, as the num-
ber of explanations for a given image can be very large, as
proven in the following lemma.

Lemma 3. The number of explanations for an input image
is bounded from above by

(
n

⌊n/2⌋
)
, and this bound is tight.

Proof. Since an explanation of the classification of x is a
minimal subset of x that is sufficient to result in the same
classification, the number of explanations is characterised by
Sperner’s theorem, which provides a bound for the number
S of largest possible families of finite sets, none of which
contain any other sets in the family (Anderson 1987). By
Sperner’s theorem, S ≤

(
n

⌊n/2⌋
)
, and the bound is reached

when all subsets are of the size ⌊n/2⌋. The following exam-
ple demonstrates an input on which this bound is reached.

Consider a binary classifier that determines whether an
input image of size n has at least ⌊n/2⌋ green-coloured pix-
els and an input image that is completely green. Then, each
explanation is of size ⌊n/2⌋, and there are

(
n

⌊n/2⌋
)

explana-
tions.

Finally, we note that given a set of explanations (sets of
pixels) and an overlap bound, finding a subset of a given
number of explanations in which elements overlap for no
more than the bound is NP-hard even assuming that con-
structing and training a binary classifier is O(1). Indeed, let
N be a binary classifier that determines whether an input
graph G = ⟨V,E⟩ contains any connected components of
size more than 1. An explanation would be a node v ∈ V
with its adjacent edges. Now, G contains an independent set
of size n iff there exist n disjoint explanations of the non-
empty label of G given by the classifier, thus proving NP-
hardness of the problem.

4 Multiple Explanations
In this section we present our algorithm for computing mul-
tiple, different explanations. As shown in Section 3, the
problem is intractable, motivating the need for efficient and
accurate approximation algorithms. Due to the lack of space,
some details and algorithms have been moved to the ap-
pendix (see the supplementary material).

4.1 What is a “Different Explanation”?
As the goal of constructing different explanations is present-
ing them to humans for analysis, we need to ensure that
the explanations are indeed perceived as different by hu-
mans. Consider the explanations in Figure 4. As discussed
by Zhang et al. (2015), a human eye fills in the gaps of hazy
and low-resolution images. Hence, if we remove a small
subset of pixels from a given explanation, it would be suf-
ficiently different from the original one according to many
distance measures, yet would likely not be different at all to
the human eye (in Figure 4 the gaps are increased for illus-
trative purposes).

To avoid this problem, we define an atomic superpixel,
the smallest set of contiguous pixels (a square) that is distin-
guishable to a human, as a parameter of the algorithm. The
concept of a superpixel is used in a number of different ex-
planation tools. Both SAG and GRAD-CAM split the image
into a 7x7 grid of squares. Dividing the image in this way
greatly reduces the computational cost of searching for ex-
planations. The rigidity of the grid, however, leads to a strict
bound on the minimum explanation size: an explanation can-
not be less than the size of a square, and a square may be
significantly bigger than the smallest superpixel responsible
for the classification. REX overcomes this problem by gen-
erating a random grid. We also allow the minimum size of
the superpixel as a parameter. We discuss this further in Sec-
tion 5. To overcome the limitations of just one grid, we allow
for multiple iterations of the algorithm, each with a different
grouping of superpixels. The results of the different grids are
automatically combined to produce a detailed saliency land-
scape, as in Figure 5. As one can see, the more iterations are
added, the smoother the saliency landscape becomes.

4.2 The REX Algorithm
The high-level structure of the algorithm is presented in Fig-
ure 3, and the pseudo-code is in Algorithm 1. We discuss
each component in more detail below.

The RANK procedure in Line 3 of Algorithm 1 con-
structs a pixel ranking , which is a ranking of the pixels of
the input image x. While any pixel ranking mechanism can
be used (e.g., an SFL-based ranking in Sun et al. (2020) or
LIME or SHAP heatmaps), the quality and the granularity of
the final results depend on the quality and the granularity of
the ranking. We implemented and tested REX with causal
responsibility-based ranking described in CKS. The number
of required explanations is given as an input parameter to
the procedure, as the total number of explanations can be
exponential (see Lemma 3).

The Floodlight procedure called in Line 5 is described
in Algorithm 2. It replaces the greedy explanation gener-
ation in DEEPCOVER with a spatially delimited stochastic



①
Ranking

Algorithm
CAUSAL RANK

②
Floodlight

Search
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③
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Figure 3: A schematic depiction of our algorithm, returning a set of explanations E for a given input image. Its components: ①
ranking generates a saliency landscape of pixels; ② search launches x floodlight searches over the landscape; ③ drain minimizes
the explanations founds in ②; ④ extract produces a maximal subset E from the output of ③, with the given overlap bound.

Figure 4: To the human eye, these two explanations for a
dog are equivalent, but they do not have any non-background
pixels in common. Naively calculating the pixel overlap is
insufficient in this case; we must take into account spatial
location.

Algorithm 1: REX(x,N , r, n, δ, p, q)

INPUT: an image x, a network N , a floodlight radius r.
the maximal number of explanations n, δ maximum overlap
between explanations, p number of floodlight expansions, q
expansion coefficient
OUTPUT: a set of up to n different explanations E

1: E ← ∅
2: l← N (x)
3: S ← RANK (x,N , l)
4: for i in 0 . . . n− 1 do
5: Ei ← Floodlight(x,N , l,S, r, n, p, q)
6: Ei ← drain(x,Ei,N ,S)
7: E ← E ∪ Ei

8: end for
9: E ← extract(E , δ)

10: return E

hill climb. In contrast to most hill-climb-based algorithms
that look for the global maximum, we search for local max-
ima, as these are likely to correspond to explanations. The
global maximum usually matches the explanation computed
by DEEPCOVER, though it is not guaranteed. The function
initialize in Line 1 creates a floodlight of radius r at a ran-
dom position over the image x. We call the model on this
masked image. If the initial size of the floodlight, F , is too
small to encompass an explanation, before taking a random
step, F expands in position a fixed number of times. If this
increased flooding still does not result in an explanation, the
floodlight takes a random step, returning to its original ra-
dius. This random step is mediated by an objective function.
By default, REX uses the mean of the responsibility of the
pixels under the floodlight.

Algorithm 2: Floodlight (x ,N , l,S, r , n, p, q)

INPUT: an image x, a network N , a label l, a saliency
landscape S, a floodlight radius r, number of steps n,
number of expansions p, radius increase q
OUTPUT: an explanation E

1: F ← initialize(r)
2: E ← ∅
3: for i in 0 . . . n− 1 do
4: for j in 0 . . . p− 1 do
5: l′ ← N (F(x))
6: if l = l′ then
7: E ← F(x)
8: return E
9: else

10: F ← expand radius(r ∗ q)
11: end if
12: end for
13: F ← neighbor
14: end for
15: return E

Once an explanation is found, REX performs a local ab-
lation drain (see the appendix for details).

Finally, the extract procedure (Algorithm 3), extracts a
subset of at most n explanations that pairwise overlap up
to the input bound δ. As discussed in Section 3.3, the exact
solution is NP-hard. The procedure uses a greedy heuristic
based on the Sørensen–Dice coefficient (SDC) (Dice 1945;
Sørensen 1948), typically used as a measure of similarity
between samples. First, we calculate the matrix SDC for all
pairs of explanations: SDC (i, j) = 0 iff SDC(Ei, Ej) ≤
δ, and is SDC(Ei, Ej) otherwise. 1 Columns that sum to
0 correspond to explanations that do not overlap others in
more than δ, and are hence added to E . We then greedily
remove the most overlapping explanations and recalculate
the overlap matrix, adding the columns summing to 0 to E .
The procedure iterates until SDC is empty.

5 Experimental Results
Implementation We implemented Algorithm 1 in the tool
REX for generating multiple explanations. Given a saliency
landscape, by default, REX attempts to find 10 explanations.

1For disjoint explanations, i.e., δ = 0, we can simply take Ei ∩
Ej instead of SDC (i, j).



(a) (b)

Figure 5: Different saliency landscapes. The image on the left shows shows an image with a single explanation, clearly indicated
by the single central peak. The other images show the saliency landscapes of a starfish after 1 and 20 iterations. The landscape
here is flatter, with multiple separate peaks. These peaks are likely to correspond with different explanations.

Algorithm 3: extract(E , δ)

INPUT: a set of explanations E , a permitted degree of
overlap δ
OUTPUT: a subset of explanations E ′ ⊆ E with overlap at
most δ

1: all pairs ← E × E
2: m← 0|E|,|E|
3: for (pi , pj ) in all pairs do
4: SDC ← dice coefficient(pi , pj )
5: mpi,pj

= SDC > δ ? SDC : 0
6: end for
7: E ′ ← ∅
8: for i in 0 . . . |E| − 1 do
9: for j in 0 . . . cols(m) do

10: if sum(colj ) = 0 then
11: E ′ ← E ′ ∪ Ej
12: end if
13: end for
14: m← remove most overlapping explanation(m)
15: end for
16: return E ′

While it is computationally relatively inexpensive to search
for more explanations than this, on our dataset we observe
that images with more than 6 sufficiently different explana-
tions are extremely rare (≈ 1% of images). The algorithm
computes multiple maximally different approximations of
causal explanations according to Definition 3.

Datasets and Models For our experiments, we used two
standard image datasets. The first dataset is ImageNet-
mini2, consisting of 3923 images representing 1000 differ-
ent labels. The second dataset consists of all images, 81 in
total, labeled starfish from the Caltech256 dataset (Griffin,
Holub, and Perona 2007). The second dataset is used as an
additional independent source of images to mitigate the risk
of overfitting to the ImageNet-mini dataset. While REX is
agnostic to the model, SAG uses VGG19 by default. To en-
able comparison, we tested REX with the same model.

2https://www.kaggle.com/datasets/ifigotin/imagenetmini-1000

5.1 Tool setup and parameters
We use both REX and SAG with default settings. In partic-
ular, REX offers a large number of tunable parameters. We
set the total number of iterations at 20, and the total number
of floodlights at 10 for all images. SAG requires the user to
set the maximal allowed overlap in squares, with suggested
values of 0, 1, or 2. REX has no required bound parameter,
but has the option of returning all explanations. We present
the results for disjoint explanations (that is, SAG with 0 over-
laps). See the supplementary material for the results for ex-
planations with a small overlap.

(a) SAG’s grid (b) Explanations

Figure 6: Two explanations from SAG overlapping on the
square no.17. SAG has a rigid overlap size (one square on
the grid). REX’s overlap is a parameter and depends on the
size of both explanations.

SAG divides the image into a rigid grid, by default 7× 7,
whereas REX iteratively refines the random image partition-
ing. We used a betabinomal distribution, with both α and β
set to 1.1 for the random partitioning, to reduce the proba-
bility of extremely unbalanced partitions. SAG takes a prob-
ability threshold when considering whether a combination
of squares is an explanation. REX, by default, takes the top
prediction from the model, without reference to probability.
Setting a probability threshold is arbitrary, whereas taking
the top prediction is more consistent with the model’s “best
guess”. More importantly, by setting a probability threshold,
we deliberately ignore inconsistent classification or misclas-
sification (Figure 2).

5.2 Experimental Results and Comparison with
SAG

A natural performance measure for multiple explanations is
the number of multiple significantly different explanations
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Figure 7: Number of disjoint explanations found by SAG
and REX on Imagenet-mini and Caltech256 starfish datasets
(The fewer images with 1 explanation, the better).

produced for each image. We tested SAG and REX with the
option of producing completely disjoint explanations and
with the option of having a small overlap. Note that as a
square in SAG has a fixed size, 1/49-th of the input image,
it can result in very similar explanations if the explanations
are small (see an illustration in Figure 6).

The main experiment was run on AWS, using a cluster of
Inter Xeon Platinum 8375C CPU @ 2.90 GHz, without GPU
support (which equally disadvantages both tools). The time-
out (TO) is set to 10 minutes for each tool on each image.
Within the given TO, SAG did not terminate on just under
half of the images in Imagenet-mini, and on one image in
the Caltech256 starfish dataset. REX terminated on all im-
ages in both datasets.

The results show that REX computes multiple explana-
tions on 7X more images in the benchmark set than SAG
(3835 for REX vs 553 for SAG). Figure 7 shows the break-
down of the results by to the number of images having a
particular number of disjoint explanations found by REX
and by SAG, respectively. The results are also presented in
the tabular form in Table 2. Table 1 presents the analysis of
percentage of termination and the average number of expla-
nations for each tool. The results on the starfish dataset are
similar to those on Imagenet-mini, demonstrating robustness
of our approach on unseen images. 1-square overlap in ex-
planations produces similar results (see the supplementary
material).

6 Conclusions and Future Work
Motivated by studies in human cognition and the need for
thorough debugging of image classifiers, this paper proposes
an algorithm and a tool REX for constructing multiple ex-
planations for the outputs of image classifiers. The algorithm
is based on a solid mathematical theory of causal reasoning
and is agnostic to the classifier, viewing it as a black box.
The tool REX is modular and borrows its ranking procedure
from the existing tool DEEPCOVER. We introduce a a novel

Datasets
Tools Imagenet-mini Starfish

% avg avg % avg avg
term term term term

REX 100 2.34 2.3 100 2.12 2.12
SAG 53 1.4 0.7 98 1.07 1.08

Table 1: Results for REX and SAG on Imagenet-mini and
Caltech256 starfish. ‘% term’ is % of images on which each
tool terminated within the TO; ‘avg term’ is the mean num-
ber of explanations for images, where the tool terminated;
‘avg’ is the mean taken over all images.

Tools No. Exp Total
1 2 3 4 5 6+

REX 169 2765 828 204 26 12 4004
SAG 1588 389 106 41 8 9 2141

Table 2: Total number of images with corresponding number
of explanations for both datasets.

explanation-discovery algorithm based on the saliency land-
scape and a “floodlight” search, ensuring different spatial
locations for explanations.

REX is built as a command-line tool and a Python library
with pluggable components. Owing to its systematic and
compositional approach, REX finds multiple different ex-
planations of image labels on standard benchmark sets and
is fully configurable. Moreover, by default REX does not de-
pend on the probabilities assigned to the labels by the clas-
sifier. We compare our results with SAG, the only other tool
for multiple explanations, and demonstrate that REX finds
significantly more explanations than SAG. Moreover, REX
terminates on the whole benchmark set, in contrast to SAG
that timed out on 50% of it. The algorithm is completely par-
allelized, which, together with the efficient floodlight search,
leads to 17X speedup compared to DEEPCOVER (see the ap-
pendix).

There is a number of promising directions for future work.
Due to the modularity of REX, it is possible to plug in any
other ranking procedure and to experiment with different al-
gorithms for explanation discovery based on the saliency
landscape. Furthermore, we hypothesise that the precision
of ranking drops for the lower ranked elements, affecting the
quality of explanations that are lower on the saliency land-
scape. While the intractability of computing an explanation
implies a tradeoff between the quality of the approximation
and the precision of the result, we will search for new heuris-
tics to improve the saliency landscape at low levels.
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