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Abstract. The black-box nature of deep neural networks (DNNs) makes
it impossible to understand why a particular output is produced, creating
demand for “Explainable AI”. In this paper, we show that statistical
fault localization (SFL) techniques from software engineering deliver
high quality explanations of the outputs of DNNs, where we define an
explanation as a minimal subset of features sufficient for making the
same decision as for the original input. We present an algorithm and a
tool called DeepCover, which synthesizes a ranking of the features of
the inputs using SFL and constructs explanations for the decisions of
the DNN based on this ranking. We compare explanations produced by
DeepCover with those of the state-of-the-art tools gradcam, lime, shap,
rise and extremal and show that explanations generated by DeepCover
are consistently better across a broad set of experiments. On a benchmark
set with known ground truth, DeepCover achieves 76.7% accuracy, which
is 6% better than the second best extremal.

Keywords: deep learning, explainability, statistical fault localization,
software testing

1 Introduction

Deep neural networks (DNNs) are increasingly used in place of traditionally
engineered software in many areas. DNNs are complex non-linear functions with
algorithmically generated (and not engineered) coefficients, and therefore are
effectively “black boxes”. They are given an input and produce an output, but the
calculation of these outputs is difficult to explain [26]. The goal of explainable AI
is to create artifacts that provide a rationale for why a neural network generates
a particular output for a particular input. This is argued to enable stakeholders
to understand and appropriately trust neural networks.

A typical use-case of DNNs is classification of highly dimensional inputs, such
as images. DNNs are multi-layered networks with a predefined structure that
consists of layers of neurons. The coefficients for the neurons are determined by
a training process on a data set with given classification labels. The standard
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criterion for the adequacy of training is the accuracy of the network on a separate
validation data set. This criterion is clearly only as comprehensive as the validation
data set. In particular, this approach suffers from the risk that the validation
data set is lacking an important instance [36]. Explanations provide additional
insight into the decision process of a neural network [9,23].

In traditional software development, SFL measures have a substantial track
record of helping engineers to debug sequential programs [19]. These measures
rank program locations by counting the number of times a particular location is
visited in passing and in failing executions for a given test suite and applying
statistical formulae. The ranked list is presented to the engineer. The main
advantage of SFL measures is that they are comparatively inexpensive to compute.
There are more than a hundred of measures in the literature [33]. Some of the most
widely used measures are Zoltar, Ochiai, Tarantula and Wong-II [8,21,14,34].

Our contribution We propose to apply the concept of explanations introduced
by Halpern and Pearl in the context of actual causality [11]. Specifically, we define
an explanation as a subset of features of the input that is sufficient (in terms of
explaining the cause of the outcome), minimal (i.e., not containing irrelevant or
redundant elements), and not obvious.

Using this definition and SFL measures, we have developed DeepCover –
a tool that provides explanations for DNNs that classify images. DeepCover
ranks the pixels using four well-known SFL measures (Zoltar, Ochiai, Tarantula
and Wong-II) based on the results of running test suites constructed from random
mutations of the input image. DeepCover then uses this ranking to efficiently
construct an approximation of the explanation (as explained below, the exact
computation is intractable).

We compare the quality of the explanations produced by DeepCover with
those generated by the state-of-the-art tools gradcam, lime, shap, rise and
extremal in several complementary scenarios. First, we measure the size of the ex-
planations as an indication of the quality of the explanations. To complement this
setup, we further apply the explanation tools to the problem of weakly supervised
object localization (WSOL). We also create a “chimera” benchmark, consisting
of images with a known ground truth. DeepCover exhibits consistently better
performance in these evaluations. Finally, we investigate the use of explanations
in a DNN security application, and show that DeepCover successfully identifies
the backdoors that trigger Trojaning attacks.

2 Related Work

There is a large number of methods for explaining DNN decisions. Our approach
belongs to a category of methods that compute local perturbations. Such methods
compute and visualize the important features of an input instance to explain
the corresponding output. Given a particular input, lime [27] samples the the
neighborhood of this input and creates a linear model to approximate the model’s
local behavior; owing to the high computational cost of this approach, the ranking



Explaining Image Classifiers using Statistical Fault Localization 3

uses super-pixels instead of individual pixels. In [4], the natural distribution of
the input is replaced by a user-defined distribution and the Shapley Value method
is used to analyze combinations of input features and to rank their importance.
In [3], the importance of input features is estimated by measuring the the flow
of information between inputs and outputs. Both the Shapley Value and the
information-theoretic approaches are computationally expensive. In RISE [25], the
importance of a pixel is computed as the expectation over all local perturbations
conditioned on the event that the pixel is observed. More recently, the concept
of “extreme perturbations” has been introduced to improve the perturbation
analysis by the extremal algorithm [6].

On the other hand, gradient-based methods only need one backward pass.
gradcam [29] passes the class-specific gradient into the final convolutional layer
of a DNN to coarsely highlight important regions of an input image. In [30],
the activation of each neuron is compared with some reference point, and its
contribution score for the final output is assigned according to the difference. The
work of [27,4,30,18] is similar: an approximation of the model’s local behavior
using a simpler linear model and an application of the Shapley Value theory to
solve this model.

Our algorithm for generating explanations is inspired by the statistical fault
localization (SFL) techniques in software testing [19] (see Sec. 3.2 for an overview).
SFL measures have the advantage of being simple and efficient. They are widely
used for localizing causes of software failures. Moreover, there are single-bug
optimal measures [15] that guarantee that the fault is localized when it is the
single cause for the program failure. While it is not always possible to localize a
single best feature to explain a DNN image classifier, single-bug optimal measures
often perform well even when there is more than one fault in the program [16].
From the software engineering perspective, our work can be regarded as applying
SFL techniques for diagnosing the neural network’s decision. This complements
recent works on the testing and validation of AI [31,22,32,20], for which a detailed
survey can be found in [13].

3 Preliminaries

3.1 Deep neural networks (DNNs)

We briefly review the relevant definitions of deep neural networks. Let f : I → O
be a deep neural network N with N layers. For a given input x ∈ I, f(x) ∈ O
calculates the output of the DNN, which could be, for instance, a classification
label. Images are among the most popular inputs for DNNs, and in this paper
we focus on DNNs that classify images. Specifically, we have

f(x) = fN (. . . f2(f1(x;W1, b1);W2, b2) . . . ;WN , bN ) (1)

where Wi and bi for i = 1, 2, . . . , N are learnable parameters, and fi(zi−1;Wi−1,
bi−1) is the layer function that maps the output of layer (i− 1), i.e., zi−1, to the
input of layer i. The combination of the layer functions yields a highly complex
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behavior, and the analysis of the information flow within a DNN is challenging.
There is a variety of layer functions for DNNs, including fully connected layers,
convolutional layers and max-pooling layers. Our algorithm is independent of the
specific internals of the DNN and treats a given DNN as a black box.

3.2 Statistical fault localization (SFL)

Statistical fault localization techniques (SFL) [19], have been widely used in
software testing to aid in locating the causes of failures of programs. SFL tech-
niques rank program elements (e.g., statements or assignments) based on their
suspiciousness scores. Intuitively, a program element is more suspicious if it
appears in failed executions more frequently than in correct executions (the
exact formulas for ranking differ). Diagnosis of the faulty program can then be
conducted by manually examining the ranked list of elements in descending order
of their suspiciousness until the culprit for the fault is found.

The SFL procedure first executes the program under test using a set of
inputs. It records the program executions together with a set of Boolean flags
that indicate whether a particular element was executed by the current test.
The task of a fault localization tool is to compute a ranking of the program
elements based on the values of these flags. Following the notation in [19], the
suspiciousness score of each program statement s is calculated from a set of
parameters 〈asep , asef , asnp , asnf 〉 that give the number of times the statement s
is executed (e) or not executed (n) on passing (p) and on failing (f) tests. For
instance, asep is the number of tests that passed and executed s.

A large number of measures have been proposed to calculate the suspiciousness
scores. In Eq. 2 we list the most widely used ones [21,8,14,34]; those are also the
measures that we use in our ranking procedure.
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There is no single best measure for fault localization. Different measures perform
better on different applications, and best practice is to use them together.

4 What is an Explanation?

An explanation of an output of an automated procedure is essential in many
areas, including verification, planning, diagnosis and the like. A good explanation
can increase a user’s confidence in the result. Explanations are also useful for
determining whether there is a fault in the automated procedure: if the explanation
does not make sense, it may indicate that the procedure is faulty. It is less clear
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how to define what a good explanation is. There have been a number of definitions
of explanations over the years in various domains of computer science [2,7,24],
philosophy [12] and statistics [28]. The recent increase in the number of machine
learning applications and the advances in deep learning led to the need for
explainable AI, which is advocated, among others, by DARPA [9] to promote
understanding, trust, and adoption of future autonomous systems based on
learning algorithms (and, in particular, image classification DNNs). DARPA
provides a list of questions that a good explanation should answer and an
epistemic state of the user after receiving a good explanation. The description of
this epistemic state boils down to adding useful information about the output of
the algorithm and increasing trust of the user in the algorithm.

In this paper, we are loosely adopting the definition of explanations by Halpern
and Pearl [11], which is based on their definition of actual causality [10]. Roughly
speaking, they state that a good explanation gives an answer to the question

“why did this outcome occur”, which is similar in spirit to DARPA’s informal
description. As we do not define our setting in terms of actual causality, we omit
the parts of the definition that refer to causal models and causal settings. The
remaining parts of the definition of explanation are:

1. an explanation is a sufficient cause of the outcome;

2. an explanation is a minimal such cause (that is, it does not contain irrelevant
or redundant elements);

3. an explanation is not obvious; in other words, before being given the ex-
planation, the user could conceivably imagine other explanations for the
outcome.

In image classification using DNNs, the non-obviousness holds for all but
extremely trivial images. Translating 1) and 2) into our setting, we get the
following definition.

Definition 1. An explanation in image classification is a minimal subset of
pixels of a given input image that is sufficient for the DNN to classify the image,
where “sufficient” is defined as containing only this subset of pixels from the
original image, with the other pixels set to the background colour.

We note that (1) the explanation cannot be too small (or empty), as a too small
subset of pixels would violate the sufficiency requirement, and (2) there can be
multiple explanations for a given input image.

The precise computation of an explanation in our setting is intractable, as
it is equivalent to the earlier definition of explanations in binary causal models,
which is DP-complete [5]. A brute-force approach of checking all subsets of pixels
of the input image is exponential in the size of the image. In Sec. 5 we describe an
efficient linear-time approach to computing an approximation of an explanation
and argue that for practical purposes, this approximation is sufficiently close to
an exact explanation as defined above.
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5 SFL Explanation for DNNs

We propose a black-box explanation technique based on statistical fault localization.
In traditional software development, SFL measures are used for ranking program
elements that cause a failure. In our setup, the goal is different: we are searching
for an explanation of why a particular input to a given DNN yields a particular
output; our technique is agnostic to whether the output is correct. We start with
describing our algorithm on a high level and then present the pseudo-code and
technical details.

Generating the test suite SFL requires test inputs. Given an input image x
that is classified by the DNN N as y = N [x], we generate a set of images by
randomly mutating x. A legal mutation masks a subset of the pixels of x, i.e.,
sets these pixels to the background color. The DNN computes an output for each
mutant; we annotate it with “y” if that output matches that of x, and with “¬y”
to indicate that the output differs. The resulting test suite T (x) of annotated
mutants is an input to the DeepCover algorithm.

Ranking the pixels of x We assume that the original input x consists of n pixels
P = {p1, . . . , pn}. Each test input t ∈ T (x) exhibits a particular spectrum for
the pixel set, in which some pixels are the same as in the original input x and
others are masked. The presence or masking of a pixel in x may affect the output
of the DNN.

We use SFL measures to rank the set of pixels of x by slightly abusing the
notions of passing and failing tests. For a pixel pi of x, we compute the vector
〈aiep , aief , ainp , ainf 〉 as follows:

– aiep is the number of mutants in T (x) labeled y in which pi is not masked;

– aief is the number of mutants in T (x) labeled ¬y in which pi is not masked;

– ainp is the number of mutants in T (x) labeled y in which pi is masked;

– ainf is the number of mutants in T (x) labeled ¬y in which pi is masked.

Once we construct the vector 〈aiep , aief , ainp , ainf 〉 for every pixel, we apply the
SFL measures discussed in Sec. 3.2 to rank the pixels of x for their importance
regarding the DNN’s output (the importance corresponds to the suspiciousness
score computed by SFL measures).

Constructing an explanation An explanation is constructed by iteratively adding
pixels to the set in the descending order of their ranking (that is, we start with
the highest-ranked pixels) until the set becomes sufficient for the DNN to classify
the image. This set is presented to the user as an explanation.

5.1 SFL explanation algorithm

We now present our algorithms in detail. Algorithm 1 starts by calling procedure
test inputs gen to generate the set T (x) of test inputs (Line 1). It then computes
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Algorithm 1 SFL Explanation for DNNs

INPUT: DNN N , image x, SFL measure M
OUTPUT: a subset of pixels Pexp

1: T (x)← test inputs gen(N , x)
2: for each pixel pi ∈ P do
3: calculate aiep , a

i
ef , a

i
np , a

i
nf from T (x)

4: valuei ←M(aiep , a
i
ef , a

i
np , a

i
nf )

5: end for
6: pixel ranking ← pixels in P from high value to low
7: Pexp ← ∅
8: for each pixel pi ∈ pixel ranking do
9: Pexp ← Pexp ∪ {pi}

10: xexp ← mask pixels of x that are not in Pexp

11: if N [xexp ] = N [x] then
12: return Pexp

13: end if
14: end for

the vector 〈aiep , aief , ainp , ainf 〉 for each pixel pi ∈ P using T (x) (Lines 2–5). Next,
the algorithm computes the ranking of each pixel according to the specified
measure M (Line 6). Formulas for measures are as in Eq. (2a)–(2d). The pixels
are sorted in descending order of their ranking (from high value to low value).

From Line 7 onward in Algorithm 1, we construct a subset of pixels Pexp

to explain N ’s output on this particular input x as follows. We add pixels to
Pexp , while N ’s output on Pexp does not match N [x]. This process terminates
when N ’s output is the same as on the whole image x. Finally, Pexp is returned
as the explanation. At the end of this section we discuss why Pexp is not a
precise explanation according to Def. 1 and argue that it is a good approximation
(coinciding with a precise explanation in most cases).

As the quality of the ranked list computed by SFL measures inherently
depends on the quality of the test suite, the choice of the set T (x) of mutant
images plays an important role in our SFL explanation algorithm for DNNs.
While it is beyond the scope of this paper to identify the best set T (x), we
propose an effective method for generating T (x) in Algorithm 2. The core idea
of Algorithm 2 is to balance the number of test inputs annotated with “y” (that
play the role of the passing traces) with the number of test inputs annotated
with “¬y” (that play the role of the failing traces). Its motivation is that, when
applying fault localisation in software debugging, the rule of thumb is to maintain
a balance between passing and failing cases.

The fraction σ of the set of pixels of x that are going to be masked in a
mutant is initialized by a random or selected number between 0 and 1 (Line 2)
and is later updated at each iteration according to the decision of N on the
previously constructed mutant. In each iteration of the algorithm, a randomly
chosen set of (σ ·n) pixels in x is masked and the resulting new input x′ is added
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Algorithm 2 test inputs gen(N , x)

INPUT: DNN N , image x (with n pixels)
OUTPUT: test suite T (x)
PARAMETERS: σ, ε, test suite size m

1: T (x)← ∅
2: σ ← sample in the range (0, 1)
3: while |T (x)| < m do
4: x′ ← randomly select and mask σ · n pixels in x
5: T (x)← T (x) ∪ {x′}
6: if N [x′] 6= N [x] then
7: σ ← max{σ − ε, 0}
8: else
9: σ ← min{σ + ε, 1}

10: end if
11: end while
12: return T (x)

to T (x) (Lines 4–5). Roughly speaking, if a mutant is not classified with the
same label as x, we decrease the fraction of masked pixels by a pre-defined small
number ε; if the mutant is classified with the same label as x, we increase the
fraction of masked pixels by the same ε.

5.2 Relationship between Pexp and Def. 1

Recall that Def. 1 requires an explanation to be sufficient, minimal, and not
obvious (see Sec. 4). As we argued above, the non-obviousness requirement holds
for all but very simple images. It is also easy to see that Pexp is sufficient, since
this is a stopping condition for adding pixels to this set (Line 11 in Algorithm 1).

The only condition that might not hold is minimality. The reason for possible
non-minimality is that the pixels of x are added to the explanation in the order
of their ranking, with the highest-ranking pixels being added first. It is therefore
possible that there is a high-ranked pixel that was added in one of the previous
iterations, but is now not necessary for the correct classification of the image
(note that the process of adding pixels to the explanation stops when the DNN
successfully classifies the image; this, however, shows minimality only with respect
to the order of addition of pixels). We believe that the redundancy resulting from
our approach is likely to be small, as higher-ranked pixels have a larger effect
on the DNN’s decision. In fact, even if our explanation is, strictly speaking, not
minimal, it might not be a disadvantage, as it was found that humans prefer
explanations with some redundancy [35].

Another advantage of our algorithm is that its running time is linear in the
size of the set T (x) and the size of the image, hence it is much more efficient
than the brute-force computation of all explanations as described in Sec. 4 (and
in fact, any algorithm that computes a precise explanation, as the problem is
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intractable). One hypothetical advantage of the enumeration algorithm is that it
can produce all explanations; however, multiple explanations do not necessarily
provide better insight into the decision process.

6 Experimental Evaluation

We have implemented the SFL explanation algorithm for DNNs presented in
Sec. 5 in the tool DeepCover5. We now present the experimental results. We
tested DeepCover on a variety of DNN models for ImageNet and we compare
DeepCover with the most popular and most recent work in AI explanation:
lime [27], shap [18], gradcam [29], rise [25] and extremal [6].6

6.1 Experimental setup

We configure the heuristic test generation in Algorithm 2 with σ = 1
5 and ε = 1

6 ,
and the size m of the test set T (x) is 2,000. These values have been chosen
empirically and remain the same through all experiments. It is possible that they
are not appropriate for all input images, and that for some inputs increasing m
or tuning σ and ε produces a better explanation. All experiments are run on a
laptop with a 3.9 GHz Intel i7-7820HQ and 16 GB of memory.

6.2 Are the explanations from DeepCover useful?

Fig. 1 showcases representative output from DeepCover on the Xception model.
We can say that explanations are indeed useful and meaningful. Each subfigure in
Fig. 1 provides the original input and the output of DeepCover. We highlight
misclassifications and counter-intuitive explanations in red. One of the more
interesting examples is the “cowboy hat”image. Although Xception labels the
input image correctly, an explanation produced by DeepCover indicates that
this decision is not based on the correct feature (the hat in the image), but on
the face, which is an unexpected feature for the label ‘cowboy hat’. While this
image was not, technically speaking, misclassified, the explanation points to a
flaw in the DNN’s reasoning. The “wool” and “whistle” are two misclassifications
by Xception, and the explanations generated by DeepCover can help us to
understand why the misclassification happens: there are similarities between the
features that are used for the correct and the incorrect labels.

Furthermore, we apply DeepCover after each training iteration to the
intermediate DNN. In Fig. 2 we showcase some representative results at different
stages of the training. Overall, as the training procedure progresses, explanations
of the DNN’s decisions focus more on the “meaningful” part of the input image,
e.g., those pixels contributing to the interpretation of image (see, for example,

5 https://github.com/theyoucheng/deepcover
6 lime version 0.1.33; shap version 0.29.1; gradcam, rise and extremal

are from https://github.com/facebookresearch/TorchRay (commit
6a198ee61d229360a3def590410378d2ed6f1f06)
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‘cowboy hat’ ‘dog’ ‘numbfish’ ‘sheep’

‘hare’ ‘mushroom’ ‘wool’ ‘turnstile’

‘langur’ ‘whistle’ ‘unicycle’ ‘fire engine’

‘traffic light’ ‘ballpoint’ ‘bolo tie’ ‘projector’

Fig. 1: Input images and explanations from
DeepCover for Xception (red labels high-
light misclassification or counter-intuitive ex-
planations)

Original It. 1 It. 5 It. 10 It. 20

Fig. 2: Explanations of the DNN
at different training stages: the
1st column are the original im-
ages and the subsequent columns
give the explanations for a partic-
ular training iteration (CIFAR-
10 validation data set)

the progress of the training reflected in the explanations of DNN’s classification
of the first image as a ‘cat’). This result reflects that the DNN is being trained
to learn features of different classes of inputs. Interestingly, we also observed
that the DNN’s feature learning is not always monotonic, as demonstrated in
the bottom row of Fig. 2: after the 10th iteration, explanations for the DNN’s
classification of an input image as an ‘airplane’ drift away from the intuitive
parts of the input towards pixels that may not fit human interpretation (we
repeated the experiments multiple times to minimize the uncertainty because
of the randomization in our SFL algorithm). The explanations generated by
DeepCover may thus be useful for assessing the adequacy of the DNN training:
they allow us to check, whether the DNN is aligned with the developer’s intent
during training. Additionally, the results in Fig. 2 satisfy the “sanity” requirement
postulated in [1]: the explanations from DeepCover evolve when the model
parameters change during the training.

6.3 Comparison with the state-of-the-art

We compare DeepCover with state-of-the-art DNN explanation tools. The DNN
is VGG16 and we randomly sample 1,000 images from ILSVRC2012 as inputs.
We evaluate the effect of highly ranked features by different methods following
an addition/deletion style experiment [25,6].

An explanation computed by Algorithm 1 is a subset Pexp of top-ranked
pixels out of the set P of all 224×224 pixels that is sufficient for the DNN to
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classify the image correctly. We define the size of the explanation as |P
exp |
|P| . We

use the size of an explanation as a proxy for its quality.
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Fig. 3: Comparison in the size of gener-
ated explanations by different tools
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of masked pixels for different tools

Fig. 3 compares DeepCover and its competitors with respect to the size
of the generated explanations. The position on the x-axis is the size of the
explanation, and the position on the y-axis gives the accumulated percentage of
explanations: that is, all generated explanations with smaller or equal size.

The data in Fig. 3 suggests that explanations based on SFL ranking are
superior in terms of their size. For example, nearly 40% of the DNN inputs can
be explained via DeepCover using no more than 10% of the total input pixels,
which is two times as good as the second best explanation method extremal.

We quantify the degree of redundancy in the generated explanations as follows.
We mask pixels following the ranking generated by the different methods until
we obtain a different classification. The smaller the number of pixels that have
to be masked, the more important the highest-ranked features are. We present
the number of pixels changed (normalized over the total number of pixels) in
Fig. 4. Again, DeepCover dominates the others. Using DeepCover’s ranking,
the classification is changed after masking no more than 2% of the total pixels in
60% of the images. To achieve the same classification outcomes, the second best
method extremal requires changing 4% of the total number of pixels, and that is
twice the number of pixels needed by DeepCover.

Discussion We have refrained from using human judges to assess the quality
of the explanations, and instead use size as a proxy measure to quantify the
quality of explanation. However, a smaller explanation is not necessarily a
better explanation—in fact, “people have a preference for explanations with
some redundancy” [35]. We therefore complement our evaluation with further
experiments. Fig. 5 gives the results of using the explanations for the weakly
supervised object localization (WSOL). We measure the intersection of union
(IoU) between the object bounding box and the equivalent number of top-ranked
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pixels. The IoU is a standard measure of success in object detection and a
higher IoU is better. The results confirm again that the top-ranked pixels from
DeepCover perform better than those generated by other tools.

Comparison with Rise The rise tool generates random masks and calculates a
ranking of the input pixels using the expected confidence of the classification of
the masked images. A rank of a pixel p by rise depends only on the confidence
of the images in which p is unmasked. By contrast, DeepCover uses a binary
classification (a mutant image is either classified the same as the original image
or not) and takes into account both the images where p is masked and where
it is unmasked. Figs. 3 and 4 demonstrate that DeepCover outperforms rise,
producing smaller and more intuitive explanations. Furthermore, the Deep-
Cover approach is more general and does not depend on a particular sampling
distribution as long as its mutant test suite is balanced (Sec. 5.1). Moreover,
the DeepCover approach is less sensitive to the size of the mutant test suite
(Fig. 6). When the size of the test suite decreased from 2,000 to 200, the size of
the generated explanation only increased by 3% of the total pixels on average.

DeepCover Extremal SHAP GradCAM LIME RISE
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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er

ag
e 

Io
U

Fig. 5: Results for weakly super-
vised object localisation

Original n=2,000 n=200 n=2,000 n=200

DeepCover rise

Fig. 6: Explanations for the ‘Welsh springer

spaniel’ by DeepCover and rise with
varying number of samples (i.e. n)

Next, we present a synthetic benchmark (Sec. 6.4) and a security application
(Sec. 6.5).

6.4 Generating “ground truth” with a Chimera benchmark

The biggest challenge in evaluating explanations for DNNs (and even for human
decision making) is the lack of the ground truth. Human evaluations of the
explanations remain the most widely accepted measure, but are often subjective.
In the experiment we describe below, we synthesize a Chimera benchmark7 by
randomly superimposing a “red panda” explanation (a part of the image of the
red panda) onto a set of randomly chosen images. The benchmark consists of
1, 000 composed (aka “Chimera”) images that retain the “red panda” label when
using both the MobileNet and the VGG16 classifiers. Fig. 7 gives several examples

7 The benchmark images are publicly available at http://www.roaming-panda.com/.

http://www.roaming-panda.com/
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of the Chimera images. The rationale is that if such an image is indeed classified
as “red panda” by the DNN, then the explanation of this classification must be
contained among the pixels we have superimposed onto the original image.

Fig. 7: Examples of em-
bedding the red panda

IoU≥0.5 IoU≥0.6 IoU≥0.7
DeepCover 76.7% 54.9% 9.8%
extremal 70.7% 21.5% 2.2%
rise 55.8% 42.9% 25.7%
gradcam 0% 0% 0%

Table 1: IoUs between the embedded red panda
and the highest ranked pixels for four different
tools

For each image from the Chimera benchmark, we rank its pixels using Deep-
Cover and other tools. We then check whether any of their top-π highest ranked
pixels are part of the “red panda”. In Table 1, we measure the IoU (intersection
of union) between the ground truth explanation and the top-π highest ranked
pixels, where π ranges from 1% to 100%. Assuming that an IoU ≥ 0.5 is a
successful detection, DeepCover successfully detects the ground truth planted
in the image in 76.7% of the total cases and it is 6% better than the second
best extremal. The benefit provided by DeepCover is even more substantial
when requiring 0.6 IoU. Overall, the results in Table 1 are consistent with the
addition/deletion experiment (Figs. 3 and 4) and the WSOL experiment (Fig. 5),
with DeepCover topping the list. Interestingly, when rise succeeds to find
the explanation, it seems to localize it better (with IoU ≥ 0.7). gradcam fails
to detect the embedded red panda in all cases. These observations support the
hypothesis that a benchmark like Chimera is a good approximation for ground
truth, and helps us to compare algorithmic alternatives.

6.5 Trojaning attacks

The authors of [17] say that a DNN is “trojaned” if it behaves correctly on
ordinary input images but exhibits malicious behavior when a “Trojan trigger” is
part of the input. Thus, we can treat this trigger as a ground truth explanation
for the Trojaned behavior of the DNN. We have applied DeepCover to identify
the embedded trigger in the input image for the Trojaned VGG Face [17]. The
result is illustrated in Fig. 8. This use case suggests that there is scope for the
application of DeepCover in DNN security.

When applying DeepCover to the Trojaned data set in [17], the top 8%
highest ranked pixels have an average IoU value of 0.6 with the Trojan trigger.
According to DeepCover, the Trojaning output for each input is caused by a
small part of its embedded trigger. This black-box discovery by DeepCover is
consistent with and further optimizes the theory of DNN Trojaning [17]. Finally,
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(a) (b)

Fig. 8: Applying DeepCover to Trojaning attacks on VGG Face. The Trojan
trigger is the square shape in the lower right corner of the image; the DeepCover
explanation for the Trojan behaviour is on the right.

as many as 80% of the (ground truth) Trojan triggers are successively localized
(with IoU ≥ 0.5) by only π = 8% of the pixels top-ranked by DeepCover.
DeepCover is thus very effective.

6.6 Threats to Validity

In this part, we highlight several threats to the validity of our evaluation.

Lack of ground truth We have no ground truth for evaluating the generated
explanations for Xception on ImageNet images, hence we use the size of an
explanation as a proxy. We have the ground truth for the Chimera images of red
panda (Fig. 7) and for the Trojaning attacks (Fig. 8), and the results support
our claims of the high quality of DeepCover explanations.

Selection of SFL measures We have only evaluated four SFL measures (Ochiai,
Zoltar, Tarantula and Wong-II). There are hundreds more such measures, which
may reveal new observations.

Selection of parameters when generating test inputs When generating the test suite
T (x), we empirically configure the parameters in the test generation algorithm.
The choice of parameters affects the results of the evaluation and they may be
overfitted.

7 Conclusions

This paper advocates the application of statistical fault localization (SFL) for
the generation of explanations of the output of neural networks. Our definition
of explanations is inspired by actual causality, and we demonstrate that we
can efficiently compute a good approximation of a precise explanation using a
lightweight ranking of features of the input image based on SFL measures. The
algorithm is implemented in the tool DeepCover. Extensive experimental results
demonstrate that DeepCover consistently outperforms other explanation tools
and that its explanations are accurate when compared to ground truth (that is,
the explanations of the images have a large overlap with the explanation planted
in the image).
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